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ABSTRACT

Let a moving-average interpolation formula for equally spaced data, exact

for the degree r, have a basic function L !Cm -1  of finite support with

ITSm) piecewise continuous. Such a formula is called "smoothest" when the

integral of the square of Jm} over the support of L is smallest. If m,
A 'I

r, and the support of L are given, either there is no such formula or there

is a unique smoothest formula, for which L is a piecewise polynomial of

degree at least r and at most max(r, 2m - 1), uniquely characterized by

certain conditions on the location of its knots and the jumps occurring

there. A similar result is obtained if consideration is limited to formulas

* that preserve (i.e., do not smooth) the given data.
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SIGNIFICANCE AND EXPLANATION

In local moving-average interpolation of equally spaced data, each
_nterpolated value is calculated as a weighted average of a few given
,r inates situated near the ordinate that is being approximated. The weight
applied iepends only on the distance between the argument of the ordinate to
which the weight is applied and the argument of the interpolated value. An
example is a procedure that was often used in the construction of mathematical
tables before computers became available. Every fifth or tenth value was
calculated from a series expansion, and the intermediate values were obtained
by local Newton-Lagrange interpolation. This amounts to litting a piecewise
polynomial function. The piecewise curve so derived had "orners,m but the
discontinuities in the first derivative were too small to be of any importance
when a smooth mathematical function was being interpolated.

In the nineteenth century British actuaries noted that the "corners" in
the curve of interpolated values were often objectionable when empirical data
were being interpolated, and they published a number of local interpolation
formulas in which piecewise polynomials of higher degree were fitted, and the
additional degrees of freedom so obtained were utilized to secure smooth

junction of adjoining polynomial arcs. In 1946 Schoenberg showed that a local
moving-average interpolation formula is fully characterized by a certain
function of finite support having a bell-shaped graph, similar in appearance
to a probability distribution, except that it usually assumes some negative
values in the tails. This he called the basic function of the interpolation
formula. In 1954 the present authors published a paper in which Schwartz
distributions and Schoenberg's basic-function concept were used to develop a
general theory of smooth-junction local interpolation formulas.

If we fix the support of the basic function, the degree (of polynomials)
for which the formula is to be exact, and the order of derivatives to be used
in judging smoothness, it is shown in the present paper that there is then a
unique interpolation formula of the class so defined that is, in a certain
sense, smoothest. Two cases are considered: that in which the curve of
interpolated values is required to pass exactly through the given data points,
and the more general case in which greater smoothness is obtained by dropping
:his requirement.
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SMOOTHEST LOCAL INTERPOLATION FORMULAS FOR EQUALLY SPACED DATA

T. N. Z. Greville and Hubert Vaughan 1

1. INTRODUCTION. Schoenberg pointed out in 1946 171 that a large class

of local interpolation formulas for equally spaced data can be expressed in

the form

Sv x  Llx - vly v , I1 .1)
V,,..V

where yV denotes a given ordinate, v x  is an interpolated value, and L(x)

is a given function called by Schoenberg the basic function of the interpola-

tion formula. This class includes the numerous formulas of so-called "oscula-

tory interpolation" published by actuarial writers (for additional references

see [31). For the latter formulas L is typically a piecewise polynomial

function of finite support belonging to continuity class C1 or C2 .

Also included is what may be called moving Newton-Lagrange interpolation,

often used, before computers became available, in the preparation of tables of

mathematical functions. An example would be the case in which the function

f is interpolated in (vh, (V + 1)h), V being any integer, by means of the

cubic p uniquely determined by the four conditions

p(x) - f(x) (x - (v + J)hr J -1,0,1,2)

A 6-page synopsis of results, without proofs, appeared in Approximation
Theory III (E. W. Cheney, ed.), Academic Press, New York, 1980.

IThe late Hubert Vaughan was General Secretary and Actuary of the Mutual Life
and Citizens' Assurance Company, Ltd., Sydney, Australia.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.



In this example L Is a continuous piecewise cubic with support in (-2,2),

whose first derivative is discontinuous at x - -2,-1,0,1,2 (see Fig. 1).

These discontinuities did not give rise to any problems in interpolating

smooth mathematical functions, but are undesirable if one is interpolating

empirical data.

Formula (1.1) is called reproducing when L is such that v , for

every integer V, whatever may be the values of the quantities y It is

clear that (1.1) is reproducing if and only if

L(V) - (v .. -l0 1 .. • (1.2)J v

where 80V is a Kronecker symbol. In practice an interpolation formula that

is not reproducing smoothes as well as interpolates, since each given ordinate

YV is, in general, replaced by an adjusted value vV . (Whether the adjust-

ment does, in fact, actually increase the smoothness of the data depends on a

judicious choice of L; see [7].)

Figure 1 shows the graphs of three typical basic functions. Note that

Karup's formula and the Newton-Lagrange central third-difference formula are

reproducing, while Jenkins' "modified" third-difference formula is not. On

the other hand, note that the Newtonian graph has corners, while the others do

not.

Formula (1.1) is called exact for the degree r when L is such that

the formula gives exact values whenever it is used to interpolate a polynomial

of degree r or less. In other words, using I r  to denote the class of
r

polynomials of degree r or less, L is such that, for every p 6 wr '

YV = p(v) for all integers V implies v x M p(x) for all real x.

-2-
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Figure 1

In the case of moving Newton-Lagrange interpolation, r in merely the

degree of the polynomial arcs employed. For the actuarial formula*, r is

less than the degree of the piecewise polynomial function L, the "degrees of

freedom" thus gained being utilized to increase the order of continuity of

L. The latter is, of course, also the order of continuity of the composite

interpolating function, for if L e c"'', then it is clear from (1.1) that

v e cm-.

when L is discontinuous (as occurs, for example, in the case of

symmetrical moving Newton-Lagrange interpolation of even degree), the

definition of exactness for the degree r requires interpretation. In such a

case, it must be assumed that Lt though discontinuous, is nevertheless such

* 1 -3-



that, for every p S ,

Ox) I Lx - v)p(V)

has only removable discontinuities, and they are removed by taking

O(x) - q(x + 0) - 0(x - 0)

2o * INIKIZZD-DU-VATIZ FORMLU * Lot I - (a,5) be a finite open

interval on the real line, and let IP denote the net of interpolation

formulas of the form (1.1) that are exact for the degree r, and have a basic

function L 6 e- '  with its support contained in I and with L (U )

piecewise continuous. Also let r denote the sbeet of 7rm consisting

of reproducing formulas. It follows from (1.2) that I Xs is ampty unless

0 e 1. By a piecewise continuous function we mean one having only jump

discontinuities and at most a finite set of these.

In each of the classes F or xer*P we would like to find thatIrm Ira

formula which is in some sense smoothest. We shall Judge smoothness by the

closeness to zero of the mth derivative of the interpolating function vx 0

Now, m-fold differentiation of (1.1) gives

v (M ) - L(m)(x - V)y, (2.1)
x V

almost everywhere. As we have some latitude in the choice of the basic

function L, but none as regards the given ordinates y V# (2.1) suggests

that the values of v (i) will be closer to zero than would otherwise be the

case, if L is chosen so that the values of L (m ) are, in some sense, as

close to zero as possible. Accordingly, we shall call a given formula of one

-4-
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of the classes -Irm or t a inimize-derivative formula (mdt) of its

Ir

class if the quantity

j-f (Llm(x)) 2 dx (2.2)

assumes for the given formula its minimum value for the class in question.

The thought leading to the definition of mdf can be made more precise in

the following manner. Let a be a given real nmber. Then, if K denotes

the maximum value of y VI for v in (a - B, a - G * 1), (2.1) gives

tV (aI N IL(m)(x - Vi

V.-

for every x in (a,a + 1). Consequently,

I B

[IV+ (a) Idt < N f IL(ol (xl dx ( 2.3)

0 a

if

denotes the width of the interval I, we have, by Schwarz' inequality,

IL(m ) I dx < (W) I1 2

where J is given by (2.2). Thus, (2.3) gives

I dt < tv(W) 1/ 2

o a+t --

-5-l ' i



in other words, we have shown that, for a given g, by ainhnLsLnp J we

minimize a certain upper bound to the Integral over a unit interval of the

absolute value of v (s ) .

MinLaiied-derivative interpolation formulas were previously defined by us

in (31, and a few exaoples were given, but no general theory was developed.

In this paper we shall show that the class IF is empty for

u < r + 1, is empty or contains a single formula (of moving Nevton-Lagrangs

interpolation) when P - r + 1, and is infinite when U ) r * 1. Inthe

latter case, we shll ahoy that there is a unique mdf, and shall characterise

this formula in a wey that leads to an algorithm for its det4rmination in any

particular case.

It was previously noted that the clos ij* is empty unless the openiree

interval I contains the origin. %hen this condition is satisfied, we shall

find that Flap is identical to F when the number of integers containedIra r

* in I does not exceed r + 1. This implies, of course, that

r+ I < < r + 2, but the converse Is not true.

when the number of integers contained in I exceeds r + I (and 0 is

among them), ___*P is a proper subset of Pine and the former contains a

unique mdf different from that associated with the latter. In this

(reproducing) case too, ye shall obtain a characterization of the mdf leading

to an algorithm for its determination.

In order to arrive at the results just described, it is first necessary

to express the requirement that (1.1) be exact for the degree r in

manageable form as a set of constraints on the basic function L. A

digression for this purpose is the subject of the next section.

-6-



3. KAINTN ANCE OF CRU. Schoenberg noted in (7) that the Implications

of exactness of formula (1.1) for the degree r becone clearer if considered

in relation to a certain weaker condition. Ti weaker condition, in a

modified form, was utilized by us in (33 and is used again here. Lot U be a

given function with its support contained in I, and let a function p and a

function 0 be related by the formula

O(x) - I H(x - V)p(V) . (3.) i

This relation may be regarded as a transformation T. that transforms p

into 0, or

t - THP •

It is evident that TH  is a linear operator. e shall say that TH

maintains the degree r if it maps the space I Into itself, or, In other

words, if p e w implies 0 0 X
r r

An important special case of maintenance of deqree is that in which T.

annihilates R : in other words, 0 is identically zero whenever p * • .r r

Schoenberg in (7) defined a transformation T. that preserves the
S.

degree r as one having the property that, for every p 6 1 , o is a

polynomial strictly of the same degree as p with the same leadin7

coefficient. He showed that T. has this property if its characteristic

function (Fourier transform of the basic function H) has the value I for the

argument 0 and zeros of order r + I for all nonvanishing integral multiples

of 29T.

We showed in (31 that if H has an (r + I)th derivative in the sense

of distributions, then TH maintains the degree r if and only if the

convolution of that (r + 1)th derivative with every element of •

r~-7-



vanishes . A more limited result, that can be stated and proved without

introducing distributiois, will suffice here, and to contained in the next

theorem.

If K has a piecevise continuous jth derivative, lot b denote the

jump of H()) at x - C.

Theorem 3.1. If T. mintains the degree r and it 9 to p1ocewise

oontinuous and has plocewise continuous derivatives of all orders, then, for

all real t,

v i b 0 I1 * 0.1o.o.r 0 (3.2)

If H iS a piecewise polynomial function with finite support and satisfies

(3.2), then TH maintains the degree r.

Proof. If ve take p(v) - vL In (3.1), the left ember of (3.2) is the

ujmp of 0(j)(x) at x - t. But, if T. maintains the deree r and I is

one of the integers O,1,...,r, 0 Is a polynomial and this junp vanishes.

Thus (3.2) is established.

On the other hand, let H be a piecewisoe polynomial function of finite

support satisfying (3.2), and let p 6 1r in (3.1). Then 0 and all its

derivatives are continuous everywhere. But, if d is the maximum degree of

the polynomial arcs composing H, then 0(+1 vanishes almost everywhere by

(3.1). Since 0(d+ l) is oontinuous everywhere, it io therefore identically

zero. It follows that o 0 w"

If 8 denotes the *central-difference operator defined by

8f~x W f(x +. 1) f f(x -1/

we have also from (3.1)



S 8  O+11xW p(V)8+IH(x - v) *

Expanding 6•t H(x - V) in terus of H(x) values by the well known binomial

formula and rearranging terms gives

6r1x) - EH(x - V)6rlp(V)

where the summation Z. is over all the integers when r is odd, and over

all the real numbers of the form integer + 1/2 when r is even. Note that

the required rearrangement of terms is permissible because the support of H

is finite.

Now, since p 0 T , 6 r+p(v) - 0 for all V. Therefore 6+1 x) - 0r

for all real x. But, a polynomial whose (r + 1)th derivative vanishes

identically belongs to I . Therefore T H maintains the degree r. 0

If TH maintains the degree r, then there is a differential operator

of order not exceeding r, which we shall call the signature of TH  and

shall denote by SH , of the form

S SH  a i aDl , (3.3)

i 

r

that is equivalent to TH over T r In other words, SHp - THP whenever
.01

0p e w . In (3.3) D denotes differentiation. The following theorem is anr

immediate consequence of the preceding definitions.

Theorem 3.2. TH  is exact for the degree r if and only if it maintains

the degree r and its signature is the identity operator.

We can express SH  in terms of H in various ways. Thus, the

coefficients ai of (3.3) are given by

-9-



ai - HM VH(V) (i - 0,1,...,r) (3.4)
if

If H is integrable, we have also

a i  if f XiH(x)dx (i 0,1,...,r)

If a basic function L satisfies (1.2), then, by (3.4), the
coefficients a, in the expression (3.3) for SL are given by

a 601 (1 - 0,1,...,r)

Thus we have established the following corollary, previously noted in [3,7].

Corollary 3.3. The interpolation formula (1.1) is exact for the degree

r if it maintains the degree r and is also reproducing.

The existence and properties of the signature SH were established in

[3) (though the term "signature" does not appear there) using the concept of

disttibutions. However, what has been stated here is easily verified by

elementary means. A similar remark applies to the following lemma, in which

we take

1
P + 1)

The lemma can be verified by noting (after some algebraic manipulation) that

the function

G(x) = (r~i)K(x _P - j) (3.5)

has the required properties.

Lemma 3.4. If K is piecewise continuous with its support contained

in I and T. annihilates I then there exists a piecewise continuous

-10-



function G with support contained in (a + P, - P), such that

8r+lG() - K(x) (3.6)

for all real x such that the left member is defined.

4. CHARACTERIZATION OF GENERAL mdf's. We note that a formula (1.1) that

is exact for the degree r must satisfy

V i L(x - V) - xi  (i - 0,1,...,r) . (4.1)

* If the support of L is contained in I, all but a finite number of the

coefficients L(x - V) vanish automatically. If P < r + I, it follows that

there is some interval for x within which each of the r + I linearly

independent functions 1,x,x ...,x is expressible as a linear combination

of r or less given functions. This is impossible. Therefore Firm  is

empty for P < r + 1.

If I = r + 1, then for every x such that x -C and x-B are

nonintegers, (4.1) can be regarded as a system of r + 1 linear equations in

the r + 1 unknown values of L(x - V). Moreover, the determinant of the

matrix of coefficients of the linear system is a Vandermonde, and therefore

nonvanishing. Thus, the system has a unique solution. Now, it is evident

that the equations are satisfied by the r + 1 fundamental functions of

Lagrange interpolation (or extrapolation) for the function value corresponding

ro tha argument x, given those corresponding to the r + I argments V

for which L(x - V) is undetermined. Moreover, each of these fundamental

functions is, indeed, a function of x - V, as (4.1) requires.

In this case of V = r + 1, L is discontinuous at those arguments x e I

that differ by an integer from a or 8, except in the special case in which

" -11-



Ct and 8 are themselves integers and also 0 e I. Only in this special

case is the formula reproducing and L continuous everywhere.

We conclude from the preceding discussion that the class F is empty

for P < r + 1, and also for P - r + I and m > 1, while for P - r + I

and m - 0 or 1, it is either empty or contains a single formula.

For P > r + 1, Firm contains an infinite number of formulas for every

nonnegative number m, and among them, as we shall see, a unique mdf. The

following theorem is the key to the characterization of this unique mdf.

Theorem 4.1. For any nonnegative integers r and m, and for

P > r + 1, the class Firm contains a single formula whose basic function

L satisfies the following three conditions:

(i) L is a piecewise polynomial function of degree at least r and at

most d = max(r,2m - 1).

(ii) Each knot of L is an argument that differs by an integer from a

or 0 (or both).

(iii) The piecewise polynomial function ar+lL is given in

(a + P, - 0) by a simple polynomial of degree at most 2m - 1.

This theorem requires interpretation for m - 0. In that case, we

interpret a polynomial of degree -1 (in condition (iii)) to mean one that is

identically zero.

We shall postpone the proof of this theorem, as it will become easier

after we have developed some further paraphernalia. However, without waiting

to prove it, we shall proceed to demonstrate its connection with the existence

of a unique mdf. For this purpose we shall need the following lemma.

Lemma 4.2. Let K e Cm- 1 , with K(m) piecewise continuous, have its

support in I, and let T. annihilate W , Let H be piecewise continuous,r

with piecewise continuous derivatives of orders I to m, let TH maintain

-12-



the degree r, and let Sr+IH be given in (a + p, -p) by a simple

polynomial of degree at most 2m - 1. Then,

H (m)(X)K(m)(x)dx - 0 . (4.2)

Proof. By Lemma 3.4, there exists a function G e C!01, with support in

(a + p, 8 - p), such that G(m) is piecewise continuous and (3.6) holds.

Denoting by a the left member of (4.2), we have

- j H(m)(x)6r+lG(m)lxldx

If r+G (x) is expanded in terms of G(m)Cx) values, the finite support

of G(m) then permits rearrangement of terms, so that

a 0- (-) j G(x)6 r+H (m)(x)dx

-rU

Since G(m) vanishes outside of (a + P, B - p), and 6r+1H(m) is given in

that interval by a polynomial of 1! M say q, we have

0 (.)r+1 O G(i)(x)q(x)dx . (4.3)

As G e Cm' 1 , m-fold integration by parts now gives 0- 0, as required. 0

Theorem 4.3 . The unique interpolation formula determined by Theorem 4. 1

is the unique mdf of the class Firm

Proof. Let L be the basic function of the unique formula determined by

Theorem 4.1, and L, the basic function of any formula of FIrm* Also let

J and J1 denote the corresponding values of the quantity given by (2.2),

-13-
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and let KI be defined by

LI(X) - L(x) + KI(X) . (4.4)

Then, it is easily verified that K1  fulfills the conditions required of K

in Lemma 4.2. Similarly, L fulfills the requirements for H in that

lemna. Therefore, by Lemma 4.2,

L(m)(x)Kim)(x)dx - 0 ( (4.5)

From (4.4) and (4.5) we have

1 J +f [Klm)(x)1 2 dx .

It follows that J < J14 Moreover, equality holds only if Kim) vanishes
V-: almost everywhere. Therefore, in this case, K(mre ) is a step function.

t1

I But, since K1 e c -1, Kim- 1) is continuous, and therefore Kim ) is

identically zero. It follows that K1 e ir _1 • But a polynomial with finite

support is identically zero, and so L1  L. 0

5. CHARACTERIZATION OF REPRODUCING mdf's. We shall first dispose of the

case in which Fir and FreP are identical. Let t denote the number of
Irm Irm

integers contained in I.

Theorem 5.1. If F is nonempty, it is identical to F if and

only if 0 e I and t < r + 1.

Proof. We have seen that Firm is empty for lI < r + 1. Therefore we

must have 1i > r + 1. This implies that t > r. In fact, t - r occurs only

when P = r + 1 and a and 0 are integers. By (3.4) and Theorem 3.2,

the r + 1 relations

-14-
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) VIL(V) 8i 0,1,...,r) (5.1)

must be satisfied. These may be regarded as a system of linear equations in

the quantities L(V) for the t integers V contained in I. If

t = r + 1, the matrix of coefficients is square. (In the special case of

t = r, one of the end values, a or 0, may be included.) The matrix is

also nonsingular, because its determinant is a Vandermonde and therefore

nonvanishing. Thus, the linear system has a unique solution. However, if

0 e I, it is evident that the values given by (1.2) are a solution, and

therefore the unique solution. Hence the formula is reproducing and Firm

and Frep are identical.Irm

As previously pointed out, there is no reproducing formula if 0 0 I.

Now, let I be such that t > r + 1, and let f, be a formula of Firm* It

follows from Theorem 4.1 that such a formula exists. If f1  is

nonreproducing, the theorem is established. Otherwise, let Ll be the basic

function of fl and T the largest integer in I. Then, for some e in

(0,1/2), [T - r - 1 - e, T + el C I. Now, consider the interpolation

formula f2  under which, for x in ( - e, A + e) for every integer A,

i .m r+l

v = L (x - V)y + k(x - A + e)m(x - A - A , (5.2)x VY- V

k being arbitrdry, while, for all other values of x, vx is given by the

summation term only. Here A is the usual finite-difference operator.

Evidently f2  belongs to Firm . However, (5.2) gives

vA = A + k(-1)m e2m Ar+lyN

and the formula is clearly nonreproducing for k # 0. ]

-15-
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The analogue of Theorem 4.1 for the reproducing case is the following

theorem.

Theorem 5.2. For any nonnegative integer r and positive integer m,

and any finite interval I - (a,B) containing 0 and such that U > r + 1,

the class Frep contains a single formula satisfying the following three

conditions:

(i) L is a piecewise polynomial function of degree at least r and at

most d - max(r,2m - 1).

(ii) Each knot of L is either an integer or an argument that differs

by an integer from a or 8 (or both).

(iii) The piecewise polynomial function 6r+IL is given in

(a + P, P - P) by a spline function of degree 2m - I with simple knots.

The knots of 6r+I L in (a + p, 8 - P) are at the integers when r is odd,
r-I

and at the arguments of the form integer + 1/2 when r is even.
F-4

As in the case of Theorem 4.1, we shall postpone the proof of this

theorem, but we shall now show its relationship to reproducing mdf's, for
Sii

which the following lemma will be needed.

Lemma 5.3. Let functions K and H satisfy the same hypotheses as in

Lemma 4.2 except that (i) K vanishes at the integers, and (ii) 6 r+lH is

given in (a + P, 8 - P) by a spline function of degree 2m - I with knots

as specified in condition (iii) of Theorem 5.2. Then (4.2) holds.

Proof. The proof is the same as that of Leman 4.2 down to equation (4.3)

except that q is a spline of degree m - I with knots as specified in

condition (ii), and it follows from the expression (3.5) for G that it

vanishes at the knots of q. Thus m-fold integration of (4.3) gives

a - (-1)m+r+l E xG(x)[q (m)(x + 0) - q(-)(x -0)

-16-
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where the summation is over the knots of q in (a + P, P - ). Since G

vanishes at these knots, a - 0, as required. 0

Theorem 5.4. The unique interpolation formula determined by Theorem 5.2

is the unique mdf of the class pe.

Proof. The proof is identical to that of Theorem 4.3, except that the

role of Lemma 4.2 there is now assumed by Lemma 5.3. 0

6. COMPACT EXPRESSION FOR mdf BASIC FUNCTIONS. If there is a formula

of F with a basic function that satisfies conditions (i) and (ii) of

Theorem 4.1, this basic function can be regarded as a spline function of

degree d with multiple knots of multiplicity d - m + 1. In general,

therefore, it has a unique expression (see [2]) of the form

d n
L(x) = [ [c (x -a- j) + g 1(x - 8 + ) (61)

i-m j-0

i
where n denotes the largest integer contained in 11 and y- max(yi,0).

The coefficients cij and gij are subject to the constraints arising from

Theorem 3.1, which can be written as

n
(a) I jkc j = 0

'K J-0
(k 0,1,...,r; i - m,m + 1,...,d) • (6.2)

n
(b) J i 1j -o

J-0

If P is an integer, the second term of the summand in (6.1) is absent (as

are, of course, the constraints (6.2)(b)).

For a formula of Fr that satisfies conditions (i) and (ii) of Theorem

5.2, in general there must be added to the right member of (6.1) the

-17-
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expression

4 h h(X j)2m-l (6.3)
i +

where E denotes the set of integers contained in i, and the constraints

X kh1  0 (kc m O,1,9*9.,r) (6.4)
36E

must be satisfied. However, when a or B is an integer, the addition of

(6.3) is not required.

We shall now show that by taking into account condition (iii) of Theorems

. 4.1 and 5.2 and by introducing certain special spline functions, we can

-I rewrite (6.1) in a form involving a much smaller number of undetermined

- coefficients and can also avoid the necessity of considering separately the

cases in which V, a, or B is an integer. For this purpose we shall need

the following lemma.

Lemma 6.1. For every nonnegative integer r and every positive integer

n > r + 1, there is a unique polynomial Prn e iT such that-- r

n
i kprn(j) = 6 0k (k - 0,1,...,r) • (6.5)

Proof. This follows easily from well known properties of orthogonal

4polynomials, but it is also readily seen as follows. Equations (6.5) may be

regarded as a system of r + I linear equations in the r + I coefficients

of Prn" The latter system has a unique solution if and only if the corre-

sponding homogeneous system has only the trivial solution. But any solution

of the homogeneous system gives rise to a polynomial p 8 r such that~r

n
I P(j)q(j) - 0 (6.6)

:i-I

-18-
SIs-



for all q e w . In particular, one may take q - P, so that (6.6) becomes ar

sum of squares, and therefore P vanishes for j - 1,2,oo.,no Since n > r,

P is identically zero. 0

We now define the splines of degree r,

n
Srn(X) = x+- [ Prn(J)(x- j)+

J-

n
S*Wx +rrn(X) = 4- Prn(J)(x +  •

"-I

. Parenthetically, we remark that by means of (6.5) and the identity

- yy~r =yr _ (_1)r(.Y)r
Y+1+

it is easily shown that S* W (-1)r+ Srn (-x). We observe also that Srn

has its support in (O,n) and Sn in (-n,O).rn

Note that condition (iii) of Theorem 4.1 or 5.2 implies, in general, that

certain knots that the function 6r+lL would otherwise be expected to have

are absent (or reduced in multiplicity in special cases of a reproducing

formula). Using the notation of (6.1), this means that

Ar+lc Ar+g 0 (j = 1,2,...,N - r - i i m m,m + 1,...,d)
ii ii

A where the finite differences are taken with respect to J, and N is the

largest integer less than M. (Note that N differs from n when P is an

integer.) This implies the existence, for i 5 m,m + 1,9..,d, of a

polynomial qi such that cij - qi(j) for j - 1,20.9.,N but not, in

general, for j = 0. Similar remarks apply to gij. We conclude from these

facts and the constraints (6.2) that

-19-
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S[cjj(x + o,( - J)+ + i~
j -O

cis " ) (x - g) + gi *jr 'i) (x - 0) (6.7)

(i " mm + 1,...,d)

where ci and gi are obtained by multiplying Cjo and giO by appropriate

constants depending only on i and r, and, in case i > r, a derivative of

negative order denotes that particular integral of corresponding order that

vanishes identically for x ( a. A little reflection will convince the

reader that the right member of (6.7) is a valid substitution even when V is

an integer (and N - 4 - 1). However, in the case of a reproducing formula,

the expression (6.3) now must always be added, even though a or B (or

both) is an integer.

Accordingly, (6.1) can be expressed uniquely in the form

d
d~x [ (r-i)( -)+ -*(r-i)(- 1168

L -) II Li SrN (x +g i rN (x-O
,i-ut ir

A function L satisfying conditions (i)-(iii) of Theorem 4.1 that is the

basic function of a formula of Firm  has, therefore, a unique expression of

the form (6.8). Similarly, a function L satisfying conditions (i)-(iii) of

Theorem 5.2 that is the basic fur.ction of a formula of Fr has a unique

expression of the form (6.8) with (6.3) added.

The coefficients ci and gi (and h in the reproducing case) must

satisfy certain constraints. These will now be described.

(a) In the reproducing case the r + I conditions (6.4) must be

satisfied. When this is the case, the expression (6.3) vanishes for x > 0.

(b) The function given by (6.8) has its support in I when d - r.

This is also true in the reproducing case if the preceding condition (a) is

-20-



fulfilled. However, when d - 2. - 1 > r, (6.8) gives, for x a B, a

polynomial of degree d - r - 1. The vanishing of the d - r coefficients of

this polynomial involves d - r constraints.

(c) In the general case, exactness for the degree r requires that

the r + 1 conditions (5.1) be satisfied.

(d) In the reproducing case, (c) is replaced by conditions ( .2). This

involves t effective constraints.

r+1
(e) The form of (6.8) ensures that 6rL shall be given in

(a + P, 6 - 0) by a polynomial in the general case, and by a polynomial

except for discontinuities in the (2m - 1)th derivative in the reproducing

case. However, in the case when d - r > 2m - 1, condition (iii) of Theorem

4.1 or 5.2 involves also a reduction in degree from d to 2. - 1. This

constitutes d - 2m + 1 constraints.

7. PROOFS OF THE CHARACTERIZATION THEOREMS . We now have the machinery

needed to prove Theorems 4.1 and 5.2.

Proof of Theorem 4.1. If there is a formula of Firm whose basic

function satisfies conditions (i)-(iii) of Theorem 4.1, that function has a

unique expression of the form (6.8) with parameters ci and gi satisfying

conditions (b), (c), and (e) of the preceding section, to the extent these

conditions are applicable. On the other hand, if there is an expression of

this form with parameters satisfying these conditions, then it is, in fact,

the basic function of such a formula.

Now, (6.8) contains 2(d - m + 1) undetermined parameters. The numbers

of constraints involved in conditions (b), (c) and (e) are, respectively,

d - r, r + 1 and d- 2m + 1. (Note that the integers d - r and

d - 2m + 1 are not both different from zero.) The total number of

-21-



constraints is 2(d - a + 1), the same as the number of parameters. Without

spelling out the constraints in detail, it is easily verified that they are

linear equations in the parameters. The parameters must therefore satisfy

2(d - m + 1) equations in as many unknowns. To prove Theorem 4.1 it is

sufficient to show that this linear system is nonsingular.

This is the case if the corresponding homogeneous system has only the

trivial solution. In fact, the only one of the constraint equations that has

a number other than 0 on its right-hand side is the one obtained by taking

I = 0 in (5.1). Thus, a function K of the form (6.8) whose parameters

satisfy the homogeneous system has the property that TK  annihilates .K r

This function K therefore fulfills the requirements for both K and H in

*Lemma 4.2. Consequently, by lemma 4.2,

S[K(m) (x)) 2dx - 0

By the same reasoning used in the proof of Theorem 4.3, it follows that K is

* identically zero. Thus, the homogeneous system has only the trivial solution. 0

Proof of Theorem 5.2. The perceptive reader may have noticed that the

possibility of m - 0, though allowed in Theorem 4.1, is excluded in Theorem

5.2. In fact, a reproducing mdf with m - 0 is somewhat meaningless, for the

following reason. Application to this case of the criteria that we have

developed would lead to a solution in which the basic function of the

corresponding mdf without the reproducing requirement is modified by

arbitrarily assigning at the integers the values given by (1.2), even though

these are inconsistent with the values at neighboring arguments. Thus, the

resulting basic function would have removable discontinuities at the integers

-22-



in I. Strictly speaking, such a function is not piecwise ocontinuous, and

therefore is not the basic function of a formula of the class ?Zr0'

If there is a formula of ?.P who** basic function satisfies conditionsIra

(i)-(iii) of Theorem 5.2, that function has a unique expression of the form

(6.8) with (6.3) added, and the parameters ci, gi, and h satisfy

conditions (a), (b), (d), and (e) of the preceding section, to the extent

these conditions are applicable. On the other hand, if there is an expression

of this form, with parameters satisfying these conditions, then it is, in

fact, the basic function of such a formula.

Now (6.8) and (6.3) together contain 2(d - m + 1) + t undetermined

parameters. The number of constraints involved in conditions (a), (b), (d),

and (e) are respectively, r + 1, d - r, t, and d - 2m + 1. The total

number of constraints is 2(d - m + 1) + t, the same as the number of

parameters. As in the general case, all the constraints are linear equations

in the parameters, and they constitute a linear system having a square

coefficient matrix.

The remainder of the proof is the same as for Theorem 4.1, except that

Lemma 5.3 now assumes the role played by Lema 4.2 in the earlier proof.

8. SOME mdf's ARE PREVIOUSLY PUBLISHED FORMULAS. In some instances the

minimized-derivative formula of a class turns out to be a previously published

formula. Table I lists, for the cases known to us, the class Firm or

Frep involved, the name of the originator, the publication citation, and the

year of publication. Two of the papers cited contain a large number of

formulas, and in these cases the particular formula is identified. In two

instances in which the published formula contains an unspecified parameter,

the numerical value of the parameter that yields the mdf is given in a

-23-



footnote. The entry "Both" in the fourth column means that Firm and I

are identical for the case involved.

TABLE I. Previously Published Formulas that are mdf's

Rep or Originator Publication
I r m Nonrep and Citation Year

(-2, 2) 1 2 Nonrep Jenkins [5] 1927

(-2, 2) 2 2 Both Karup [6] 1898

(-2, 2) 2 3 Both Greville M1] (105) 1944

(-5/2, 5/2) 2 2 Nonrep Greville (1] (67)2 1944

(-5/2, 5/2) 3 2 Nonrep Greville 1] (69) 1944

(-3, 3) 3 2 Nonrep Greville Il] (73)3 1944

(-3, 3) 3 3 Nonrep Vaughan (10] "C" 1946

(-3, 3) 3 2 Rep Henderson [41 1906

(-3, 3) 4 2 Both Shovelton [8] 1913

(-3, 3) 4 3 Both Sprague [9] 1880

2 With a13 = 13/80.

3With a04 = -7/108.
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